

Terrain Above Ground

PVC-u above ground drainage systems

Terrain Above Ground Drainage Systems

Having pioneered the development of solvent-weld systems, Terrain soil & waste products represent the industry benchmark for quality, installation, flexibility and product innovation backed by the highest levels of customer service. Terrain systems include an extensive range of soil & waste drainage products for commercial, industrial, housing and public sector developments, all built on the strength of our Terrain brand. Systems include solvent-weld and push-fit options for both soil & waste drainage; overflow, WC pan and trap connectors along with a comprehensive range of adaptors and accessories. Products are available in a range of colours.

- Industry leading range of solvent and push-fit soil and waste solutions
- Unique products offer unrivalled installation options
- High quality finish, colour to match all systems
- Suitable for all types of commercial and domestic installations
- Extensive technical experience to support and advise on all aspects of design and installation
- Fully accredited product systems

As you would expect from a market leader our products come with all relevant standards including:

Manufacturing Standards

BS 5255:1989 Specification for Thermoplastics Waste Pipe and Fittings

BS 4514:2001 PVC Soil and Ventilation Pipes, Fittings and Accessories

BS EN 1329:2000 Plastic Piping Systems for Soil and Waste Discharge

BS EN 1566:2000 Plastic Piping Systems for Soil and Waste Discharge (Chlorinated)

BS EN 12380 A1 Air Admittance Valve

BS EN 12380 A1 Air Admittance Valve (Pleura System)

BS EN 1366-3 Terrain Firetrap Sleeves and Collars

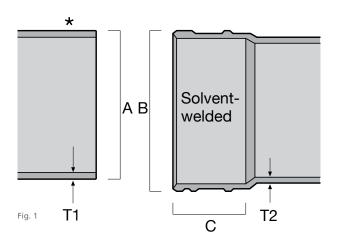
Quality Management Systems Standards

EN ISO 9001:2008 Management System

EN ISO14001:2004 Management System

BS OHSAS 18001:2007 Management System

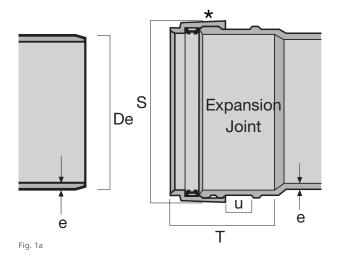
PASS 99:2006 Integrated Management Registration


Terrain Soil System

100 Soil System - PVC-u (solvent-weld)

82, 110 and 160mm PVC-u soil pipes and fittings:

 Wide range of bends, branches and access fittings to meet all application requirements



82, 110 and	160mm pipe a	ınd fittings (Fi	g.1)	
Α	В	С	T1	T2
82	95	51	3.2	3.2
110	122	51	3.2	3.2
160	175	76	3.3	3.5

The pipe and socket illustrated here are for solvent weld jointing. The conversion to seal ring expansion joint is made by adding a 109 seal ring adaptor to the socket.

* Some Terrain fittings feature a groove here, as shown on the underside.

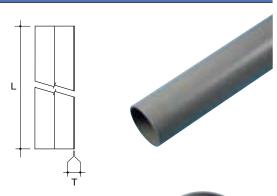
82, 110 ar	82, 110 and 160mm pipe and fittings (Fig.1a)									
De	S	e (min pipe)	e (min body of fitting)	U	T					
82	102	3.2	3.2	18	72					
110	127	3.2	3.2	19	72					
160	184	3.3	3.5	25	101					

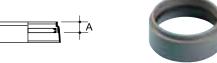
The 109 seal ring adaptor has been drawn in position on the socket of the 100 system fitting to illustrate its application and dimension S. The dimension U is to accommodate all Terrain holderbats.

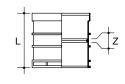
* Some Terrain fittings feature a groove here, as shown on the underside.

100 Solvent-Weld

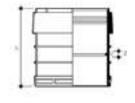
	Size (mm)	L	T (min)	Colour	Code
SOI	L PIPE - PLAIN	ENDED			
\$	82	3m	3.2	GBW	100.3.30
\$	82	4m	3.2	GBW	100.3.40
\$	110	3m	3.2	GBWR	100.4.30
\$	110	4m	3.2	GBWR	100.4.40
\$	160	3m	3.3	G	100.6.30
\\$	160	3m	3.3	G	100.6.40

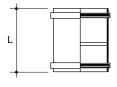

Size (mm)	А	Colour	Code
RING SEAL ADAPTOR -	converts any Terrain s	olvent socket to a ring sea	l expansion socket
82	21	GB	_ 109.3
110	21	GBWR	_ 109.4
160	26	G	_ 109.6

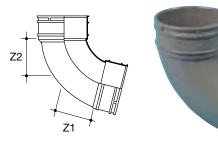

	Size (mm)	L	Z	Colour	Code
STR	AIGHT COUPL	ER DOUBLE S	OCKET - double	solvent socket	
\$	82	92	3	GBW	110.3
\$	110	102	3	GBWR	110.4
\$	160	160	8	G	110.6

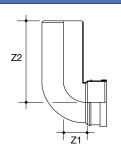

	Size (mm)	L	Z	Colour	Code
EXPA	ANSION COU	PLER - to allow	expansion in long	ger pipe runs	
\$	82	113	3	GBW	111.3
\$	110	123	3	GBW	111.4
8	160	210	8	G	111.6

	Size (mm)	L	Colour	Code
SLIP	COUPLER DO	UBLE SOCKET		
\$	82	134	G	☐ 111.S.3
\$	110	144	GB	☐ 111.S.4
8	160	210	G	☐ 111.S.6

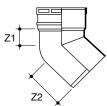

	Size (mm)	Angle°	Z1	Z2	Colour	Code
SW	EPT BEND DO	OUBLE SOC	KET			
♥	82	92½	102	98	GBW	101.3.92
\$	110	921/2	75	83	GBWR	1 01.4.92
\$	160	921/2	178	184	G	101.6.92
\$	110	104	80	76	G	101.4.104
\$	110	1121/2	65	63	GB	101.4.112
\$	82	135	25	25	GBW	1 01.3.135
\$	110	135	21	30	GBWR	1 01.4.135
\$	160	135	44	44	G	1 01.6.135

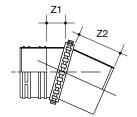


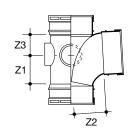


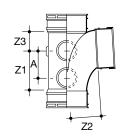


Terrain Soil System

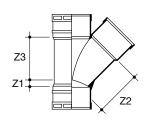

Terrain Soil System - 100 Solvent-Weld


	Size (mm) /	Angle°	Z1	Z2 (max)	Z2 (min)	Colour	Code
9	SPIGOT	SOCKE	T BENDS -	long tai	I			
6	9 8:	2	921/2	41	152	97	G	107.3.92
6	9 11	0	921/2	57	197	110	GBW	107.4.92


:	Size (mm)	Angle°	Z1	Z2 (max) Z2 (min)	Colour	Code
SPI	GOT SOCK	ET BENDS	5			
\$	110	135	42	85	GBW	107.4.135
\$	160	135	60	130	G	107P.6.135



	Size (mm)	Z1	Z2	Colour	Code
VAR	RIABLE BEND	SPIGOT/SOCK	ET - adjustable 0	- 25°	
\$	110	0 - 25	45	G	107.4.025
Doub	ole spigot				
8	110	0 - 25	45	G	101.4.025



5	ize (mm)) Angle°	Z1	Z2	Z 3	Α	Colour		Code
SINGLE EQUAL BRANCH TRIPLE SOCKET - con adaptors (see page 21)						connect to	boss horns	s using	g 117 boss
\$	82	921/2	70	83	35		GBW		104.3.92
\$	82	135	19	108	102		GB		104.3.135
\$	110	921/2	82	82	54		GBWR		104.4.92
\$	110	921/2	101	96	50	74	GBW		104.4.924
\$	160	921/2	184	178	160		G		104.6.92
With	With boss connections								
							2 boss ho	rns	104.3.92
							3 boss ho	rns	104.4.92

	Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code
SIN	GLE EQUA	L BRANCI	H - no wa	ste boss con	nections		
	110	104	77	74	72	G	104.4.104
\$	110	135	25	137	137	GBW	104.4.135
\$	160	135	53	198	198*	G	104.6.135

4 boss horns

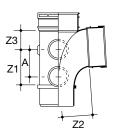
6 boss horns

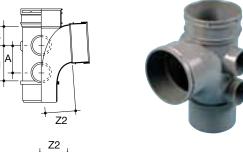
104.4.924

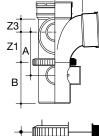
104.6.92

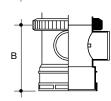
100 Solvent-Weld

Size	(mm)	Angle°	Α	Z1	Z2	Z3	Colour		Code
SIN	GLE B	RANCH S	PIGOT	OUTLET -	with bos	s connection	ons - 4 boss	horn	s
\$	110	921/2	74	103	96	50	GB		104.104.92

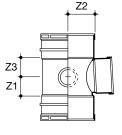

Size	(mm)	Angle°	Α	В	Z1	Z2	Z3	Colour	Code
SIN	IGLE E	QUAL BR	ANCH	VARIA	BLE B	OSS - Sp	oigot out	let, 2 boss ho	orns, 2 waste sockets
\$	110	921/2	142	140	91	83	59	G	<u></u>

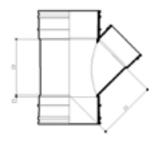

Size	(mm)	Angle°	Α	В	Z1	Z2	Z3	Colour		Code
SINGLE EQUAL BRANCH VARIABLE BOSS - Socket outlet										
\$	110	921/2	142	140	91	83	59	G		104.422.92

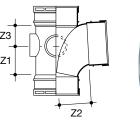

Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code		
SINGLE UNEQUAL BRANCH TRIPLE SOCKET - 2 boss horns								
\$\\psi\$ 160/110	921/2	59	87	62	G	104.64.92		

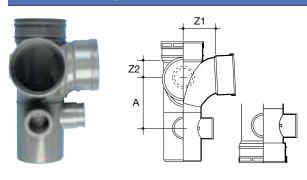

Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code			
SINGLE UNEQUAL BRANCH TRIPLE SOCKET - No waste boss connections									
\$ 160/110	135	70	173	164	G	104.64.135			

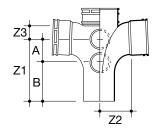
Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code
CORNER E	BRANCH TR	RIPLE SOC	KET - 1 bos	s horn		
110	921/2	94	83	59	G	106.490.92
160	921/2	196	172	135	G	106.690.92

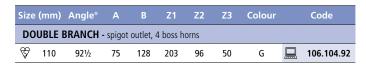






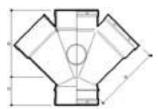


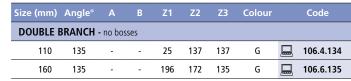

Terrain Soil System

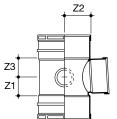


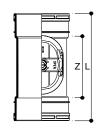
Size (mm)	Angle°	Α	Z1	Z2	Colour	Co	de		
CORNER BOSS BRANCH - spigot outlet - 1 boss horn, 2 waste sockets									
110	921/2	120	83	59	G	<u></u>	.490.12		

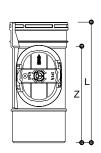
9	Size (mm)	Angle°	Α	Z1	Z2	Colour	Code				
COF	CORNER BOSS BRANCH - socket outlet										
	110	92½	120	83	59	G	106.490.22				






Size	(mm)	Angle°	Α	В	Z1	Z2	Z3	Colour	Code
DO	UBLE E	BRANCH -	socket	outlet,	4 boss h	orns			
8	110	92½	74	-	138	95	50	G	106.4.92




	Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code
DO	UBLE UNE	QUAL BRA	ANCH - 2	2 boss horns			
8	160/110	921/2	59	87	62	G	106.64.92

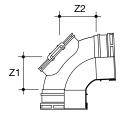
Size (mm)	L	Z	Colour	Code
ACCESS PIPE DO	UBLE SOCKET			
110	216	115	GBWR 📮	138.4
160	396	230	G8WR	138.6

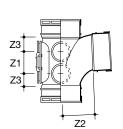
	Size (mm)	L	Z	Colour	Code
	ACCESS PIPE S	SINGLE SOCKET			
-	\$ 110	216	166	GB	139.4

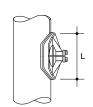
100 Solvent-Weld

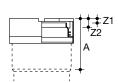
	Size (mm)	Α	В	Z	Colour	Code
ACC	ESS PIPE CO	NNECTOR	- 2 boss ho	rns		
\$	82	41	39	120	GBW	137.3
\$	110	41	35	149	GBW	137.4

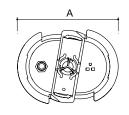
	Size (mm)	Angle°	Z1	Z2	Colour	Code
AC	CESS BEND D	OUBLE SO	CKET			
\$	110	921/2	102	98	GBW	103.4.92

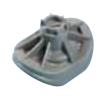

	Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code
SINC	GLE ACCESS	BRANCH	TRIP	LE SOCK	(ET - 4	boss horns	
\$	110	921/2	99	96	50	GBW	105.4.92

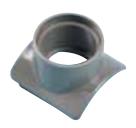

	Size (mm) L		Hole Saw Ø	Colour	Code
ACCI	ESS DOOR				
\$	82	114	48	G	135.3
\$	110	152	73	GB	135.4
8	160	152	73	G	135.6

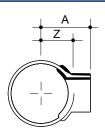

Size (mm)	А	Z1	Z2	Colour	Code
ACCESS CAP					
82	83	16	32	GW	136.3
110	97	21	46	GBWR	136.4
160	122	22	42	G	136.6


А	Colour	Code
ACCESS DOOR WITH TEST NIPPLE		
127	GBWR	6592/DVW

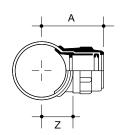


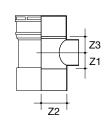


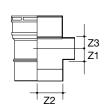




Terrain Soil System


Siz	e (mm)	Α	Z	Hole Saw Ø	Colour	Code
TWO PA	RT WASTE	BOSS S	OLVEN	IT SOCKET		
1	10/32	79	53	48	G	112.4.125
	32/40	69	39	57	G	112.3.15
1	10/40	82	53	57	G	112.4.15
1	10/50	86	53	70	GW	112.4.2
1	60/50	110	77	70	G	112.6.2


:	Size (mm)	L	Colour	Code
SOCK	(ET PLUG			
\$	110	69	GBW	130.4
\$	160	92	G	130.6


	Size (mm)	A	Z	Hole Saw Ø	Colour	Code
SEL	F LOCKING B	OSS SEA	L RING	SOCKET		
\$	110/32	111	60	60	GW	122.4.125
\$	110/40	111	60	64	GB	122.4.15
\$	110/50	119	60	75	GBW	122.4.2

	Size (mm)	Z1	Z2	Z3	Colour	Code			
SIN	SINGLE BOSSED PIPE CONNECTOR DOUBLE SOCKET								
♥	110/32	30	56	31	GBWR	120.4.125			
\$	110/40	30	56	31	GBWR	120.4.15			
♥	110/50	30	59	31	GBW	123.4			

	Size (mm)	Z1	Z2	Z3	Colour	Code
SIN	GLE BOSSED	PIPE CON	NECTOR S	SPIGOT - f	or 40mm waste pi	pe
\$	110/40	28	56	27	GR	120.412.15

100 Solvent-Weld

Terrain Soil System - 100 Solvent-Weld

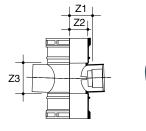
	Size (mm)	Z1	Z2	Z3	Colour	Code			
DOUBLE BOSSED PIPE CONNECTOR DOUBLE SOCKET - for 50mm waste pipes (40mm with adaptor)									
\$	82/50	50	38	65	GB	120.3.2			

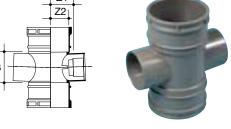
² x 50mm waste sockets, 2 blanking plugs.

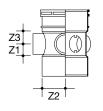
	Size (mm)	Z1	Z2	Z3	Colour		Code		
TRIPLE BOSSED PIPE CONNECTOR DOUBLE SOCKET									
₩	110/40	30	56	30	GB		121.4.15		

Sia	ze (mm)	Z1	Z2	Z3	Z4	Z5	Colour		Code
FOUR-WAY BOSS PIPE DOUBLE SOLVENT SOCKET									
	110	44	40	56	55	59	G		120.4.2

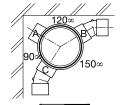
2 boss horns, 2 waste sockets.

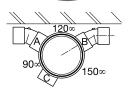

Size (mm)	Z 1	Z2	Z3	Z4	Z5	Colour		Code	
FOUR-WAY BOSS PIPE DOUBLE SOLVENT SOCKET/SPIGOT									
110	44	40	56	55	59	G		120.412.2	

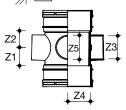

2 boss horns, 2 waste sockets.


	Size (mm)	L1	L2	L3	L4	Z1	Colour		Code
UNIVERSAL SOIL MANIFOLD - for solvent waste connections									
\$	110	228	189	199	217	105	G		119.412.15

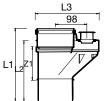
For connection of BS 5254/BS 5255 40mm waste pipes at floor level. Incorporates 4 inlets to accept 40mm waste pipes without need for adaptors. Use with Swivel Elbow or Swept Bend. For pushfit waste connections see page 21.

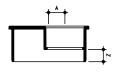

	Size (mm)	A	Z	Colour	Code
SOC	KET REDUCE	R - for solvent co	nnections		
\$	82/50	11	3	GW	124.3.2
8	110/50	24	3	GBW	124.4.2
8	110/82	11	3	GBW	124.4.3
8	160/110	22	25	GW	124.6.4

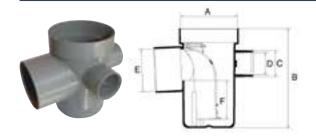


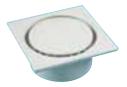


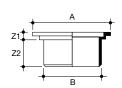




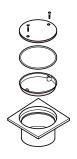


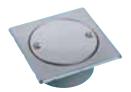



Terrain Soil System


Terrain Soil System - 100 Solvent-Weld

Size (mm)	Α	В	С	D	E	F	Colour	Code	
TRAPPED FLOOR GULLY - under-floor trap (e.g. for shower areas) with 3 sockets to accept 40mm or 50mm waste pipe e.g. for shower and wash down areas									
110/82	110	169	51	43	82	50	GT	281.43	
160/110	160	169	51	43	110	50	GT	281.64	
110/82	110	194	64	56	82	75	GT	279.432*	
*2" Inlets on	ıly. Refe	r to pag	e 31 fo	r socke	t reduce	rs if req	uired		


Seal depth: 50-75mm. Cleaning access via removable baffle with integral gasket to maintain airtight seal.



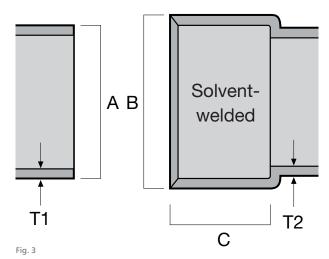
Size (mm)	Α	В	Z1	Z2	Colour	Code		
FLOOR GULLY INLETS - two part fitting to be set in standard-tiled floor (e.g. in shower areas). Comprises of raising piece with 50mm top and snap-in cover								
110 PVC	50 x 150	110	14	48	GW	282.6		
110 SS	50 x 150	110	14	48	Self	283.6		

Size (mm)	Colour	Code
SEALED GULLY RAISING PIECE		
110	GW	284.6

Size (mm)	Colour	Code
SEALED GULLY RAISING PIECE		
110	Self [285.6

Terrain Waste System

200 Waste System - MuPVC (Solvent-Weld)


Solvent-weld MuPVC system:

- 32, 40 and 50mm integrated systems
- Wide range of bends and adaptors
- Integrated floor gullies

All Terrain fittings and extrusions are manufactured to BS EN ISO 9001: 2000 certification.

32, 40 and 50mm pipe and fittings (Fig.3)									
Nom.	Α	В	С	T1 (min)	T2 (min)				
32mm	36	42	24	1.8	1.8				
40mm	43	49	27	1.9	1.9				
50mm	56	62	30	2.0	2.0				

The pipe and socket illustrated here are for solvent weld jointing.

200 Solvent-Weld

Terrain Waste System - 200 Solvent-Weld

	Size (mm)	L1	T (min)	Colour	Code					
WAS	WASTE PIPE - plain-ended									
\$	32	3m	1.8	GW	200.125.30					
\$	32	4m	1.8	GBWR	200.125.40					
\$	40	3m	1.9	GW	200.15.30					
\$	40	4m	1.9	GBWR	200.15.40					
\$	50	3m	2.0	W	200.2.30					
\$	50	4m	2.0	GBW	200.2.40					

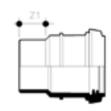
T	

Size (mm)	Α	Colour	Code				
SEAL RING ADAPTOR - to convert 50mm 207.2 spigot socket bends to expansion fitting							
50	65	GW	209.2				

	Size (mm)	L	Z	Colour	Code					
STRA	STRAIGHT COUPLER DOUBLE SOCKET									
\$	32	52	2	GBWR	210.125					
\$	40	58	2	GBWR	210.15					
\$	50	65	2	GBW	210.2					

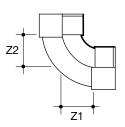
	Size (mm)	L	Z	Colour	Code				
UNION DOUBLE SOCKET - threaded union for easy disconnection if required									
\$	32	59	8	G	211.125				
\$	40	65	8	G	211.15				
\$	50	73	8	G	211.2				

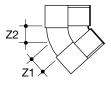
	Z	
_		_
	' L '	

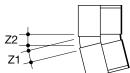


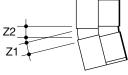
	Size (mm)	L	Z	Colour	Code
EXPA	ANSION COUF	PLER SEAL RI	NG AND SOLVE	NT SOCKET	
\$	32	67	4	GW	225.125
\$	40	70	4	GW	225.15
	50	77	4	GW	225.2

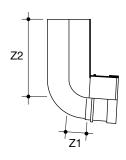
	Size (mm)	Z	Colour	Code
SPIG	OT SOCKET COL	JPLER		
\$	32	27	GW [227.125
\$	40	30	GW [227.15
	50	35	GW	227.2

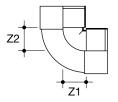


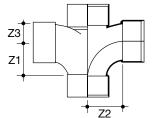

Terrain Waste System

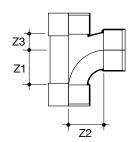

Terrain Waste System - 200 Solvent-Weld











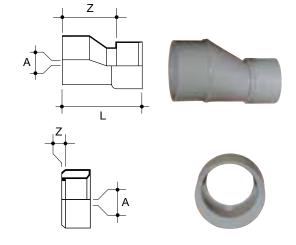
	Size (mm)	Angle°	Z2	Z2	Colour	Code
SWE	PT BEND DO	UBLE SOC	KET - for	91¼° swept b	end, 91¼°, 135°	and 165° as standard
\$	32	911/4	34	34	GBWR	201.125.91
\$	40	911/4	38	38	GBWR	201.15.91
\$	50	911/4	45	45	GBW	201.2.91

	Size (mm)	Angle°	Z2	Z2	Colour	Code
SW	EPT BEND DO	OUBLE SOC	KET - for	135° swept b	end	
\$	32	135	10	10	GBWR	201.125.135
\$	40	135	11	11	GBWR	201.15.135
\$	50	135	14	14	GBW	201.2.135
\$	32	165	5	5	G	201.125.165
♥	40	165	5	5	G	201.15.165
\$	50	165	6	6	G	201.2.165
						•

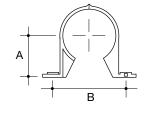
	Size (mm)	Angle°	Z2	Z2(max)	Z2(min)	Colour	Code				
SPIGOT/SOCKET BENDS - to change pipe direction in limited-space situations, 91½°, 130° and 150° as standard											
	32	911/2	19	92	46	GBW	207.125.92				
\$	40	921/2	21	95	52	GBW	207.15.92				
	50	921/2	29	102	64	GBW	207.2.92				
	32	135	8	30	-	GBW	207.125.135				
	40	135	11	38	-	GBW	207.15.135				
	50	135	13	46	-	GBW	207.2.135				
	32	150	8	52	29	GBW	207.125.150				
-	40	150		40	22	CDW	707 15 150				

	Size (mm)	Angle°	Z2	Z2	Colour	Code			
KNUCKLE BEND DOUBLE SOCKET									
\$	32	911/4	19	19	GBWR	202.125.91			
8	40	911/4	22	22	GBWR	202.15.91			

	Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code			
SWE	SWEPT CROSS ALL SOCKET									
\$	40	911⁄4	44	44	20	GW	206.15.91			
\$	50	911⁄4	51	51	25	GW	206.2.91			
\$	50	135	13	71	71	G	206.2.135			

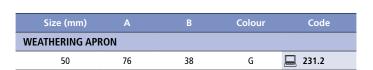

	Size (mm)	Angle°	Z1	Z2	Z3	Colour	Code
SW	EPT TEE ALL S	SOCKET - 9	1¼°, 1	35° and	165° as	standard	
\$	32	911/4	30	30	19	GBWR	204.125.91
\$	40	911/4	32	35	22	GBWR	204.15.91
\$	50	911/4	43	43	29	GBW	204.2.91
\$	32	135	8	48	48	GW	204.125.135
\$	40	135	10	57	57	GW	204.15.135
\$	50	135	13	71	71	GBW	204.2.135

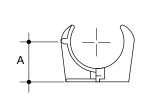
200 Solvent-Weld

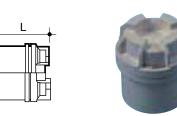

Terrain Waste System - 200 Solvent-Weld

	Size (mm)	A	L		Colour	Code
	EVEL INVERT bipe. Larger end sp				dard fitting to a	ccept a smaller size
	40/32	4	73	47	G	223.15.125
6	50/32	10	98	73	GW	223.2.125
6	50/40	7	62	62	G	223.2.15

	Size (mm)	А	Z	Colour	Code
SOC	KET REDUCER	1			
\$	40/32	0	3	GBWR	224.15.125
♥	50/32	7	6	GBW	224.2.125
\$	50/40	4	3	GBW	224.2.15

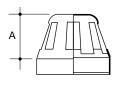

Size (mm)	Α	В	Colour	Code
PIPE FIXING CLIP				
32	33	54	GBWR	240.125
40	37	60	GBWR	240.15
50	43	76	GBW	240.2

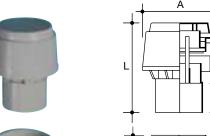




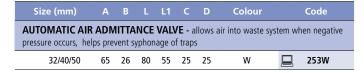
Size (mm)	А	В	Colour	Code
EXPANSION FITTII points along pipework		LIP - to secure con	trol thermal exp	pansion at regular
32	33	54	GW	242.125
40	37	60	W	242.15
50	43	76	GW	242.2

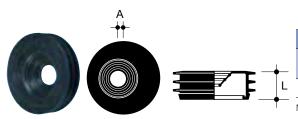
Size (mm)		L	Colour	Code
ACCI	ESS PLUG			
	32	47	GBW	237.125
\$	40	54	GBW	237.15
	50	56	GBW	237.2



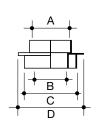


Terrain Waste System


Terrain Waste System - 200 Solvent-Weld



Size (mm)	А	Colour	Code
VENT COWL			
50	34	GW ,	250.2


Size (mm)	А	L	Colour	Code
ADAPTOR TO UND 100mm bore, external		DRAIN - push-fit	connection into	pipes with nominal
32/40/50	8	40	В	☐ 4DW200

Note: As a Terrain Underground product different discount structure applies.

Size (mm)	Α	В	Z	Colour	Code					
POST FORMED STOCKET - supplied with seal ring										
50	70	42	358	G	226.2					
Note: Use with 9132.2										

Size (mm)	Α	В	С	D	Colour	(Code
CAULKING BUSH Solvent-weld to pipe	- for cor	nnecting	MuPVC v	vaste pipe	e to 50mm socket	t of othe	r material.
32/42/50	43	36	56	70	G		232

General Principles

Good Site Practice

- Take all reasonable care when handling PVC-u particularly in very cold conditions when the impact strength of the material is reduced.
- Do not throw or drop pipes, or drag them along hard surfaces.
- In case of mechanical handling, use protective slings and padded supports. Metal chains and hooks should not make contact with the pipe.

On-site storage

- Stack pipe lengths
 - either on a flat base
 - or on level ground
 - or on 75mm x 75mm timber at 1 meter centres (Fig. 1)
- Provide side support with 75mm wide battens at 1m centres (Fig. 1).
- Maximum stack (normal conditions): seven layers high.
- Ideally, stacks should contain one diameter pipe size only. Where this is not possible, stack largest diameter pipes at base of stack. Small pipes may be nested inside larger pipes.
- If stored in the open for long periods or exposed to strong sunlight, cover the stack with opaque sheeting.

- Store fittings under cover. Do not remove from cartons or packaging until required.
- Store solvent cement and cleaning fluid in a cool place out of direct sunlight and away from any heat source.

Storage in hot climates

- Ultra-violet light can affect pipes and fittings: pipe colour may change and rubber seals may be degraded.
- Accordingly:
 - store all materials in well-ventilated, shady conditions
 - do NOT expose to direct sunlight
 - keep fittings in original packaging until required for use
- Maximum stack (hot conditions): six layers high.

Site safety

- The relevant regulations detailed in the Health & Safety at Work Act 1974, and Construction (Design & Management) Regulations 1995, must be adhered to on site.
- COSHH data sheets are available on request.

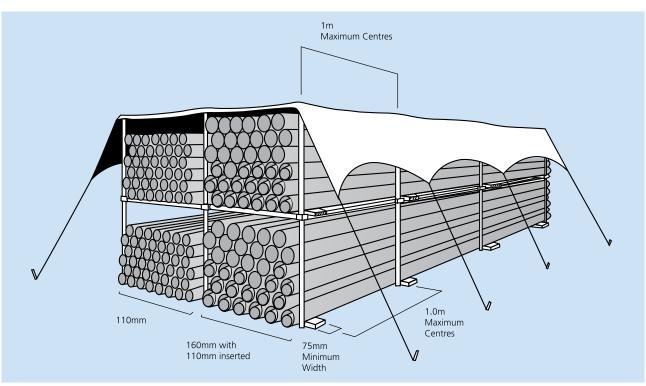


Fig. 1 Pipe stacking

Sitework Instructions

Solvent cement jointing

This technique applies to 100, 200, 400 and 500 pipes when used with 100, 200 and 500 system fittings.

Step 1

Cut pipe square, deburr and clean mating surfaces with Terrain cleaning fluid 9101 (Fig.1).

Step 2

Coat mating surfaces with solvent cement using a clean brush, assemble joint immediately, removing any excess cement with a clean rag. Initial set 3-minutes. Note 24 hours is required for the joint to fully set before testing. (Fig. 2).

Brush supplied with tin is suitable only for sizes up to 50mm for larger sizes use at least 12mm brush. Directions for use of solvent cement are printed on the container label and must be followed closely.

Under normal use only fit 109 to upstream socket.

Step 1

Clean mating surfaces with Terrain cleaning fluid 9101 (Fig.3).

Step 2

Fit seal ring into 109 collar (Fig. 4)

Step 3

Carefully apply solvent cement to mating surfaces (Fig. 5)

Step 4

Assemble immediately applying firm even pressure until collar is in correct position (Fig. 6)

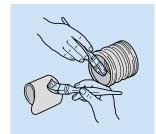


Fig. 2

Fig. 3

Fig. 4



Fig. 5

Fig. 6

Estimating guide: Terrain cleaning fluid, liquid weld, lubricants

Contents				Pipe sizes & number of joints achievable*				
		32mm	40mm	50mm	82mm	110mm	160mm	
9101 Cleaning Fluid	125ml	80	80	80	30	20	10	
	250ml	160	160	160	60	40	20	
9100 Liquid Weld solvent cement	30ml	10	10	10	3	2	1	
_	125ml	27	27	27	10	7	3	
_	250ml	55	55	55	20	15	7	
9136 Lubricant	250gm	400	300	250	200	150	100	

^{*} For guidance only: approximate number allowing for wastage.

Seal ring jointing - 109

Step 1

File a 45° chamfer onto end of square cut pipe. Lubricate rubber seal with Terrain lubricant 9136 (Fig.7).

Step 2

Enter pipe fully into socket, mark pipe as shown (Fig. 8).

Step 3

Withdraw pipe until the mark is 12mm away from socket. This means a 12mm gap exists between the end of the pipe and the socket register. This gap will allow the pipe to expand without distorting the pipework. Anchor the expansion joint with a holderbat or if not practical anchor a fitting within 1 metre of the joint (Fig 9 & 10).

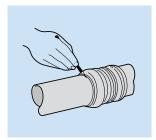
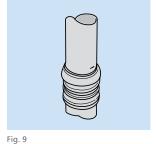



Fig. 8

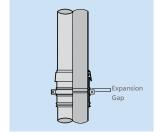


Fig. 10

Slip coupling - 111.S

Slip couplings are used for inserting additional fittings such as branch or for remedial work in existing soil pipework. To insert fitting:

Step 1

Assemble the fitting with a short length of pipe in the appropriate sockets. Cut out a section of the assembly, allowing for an expansion gap. Clean and chamfer pipe ends. Lubricate seals of the slip couplings.

Step 2

Slide the couplings completely over the spigot ends of the existing pipe.

Step 3

Insert and line up the new assembly, slide back the couplings to cover over the joints. Secure slip couplings with holderbats. (See Fig. 11).

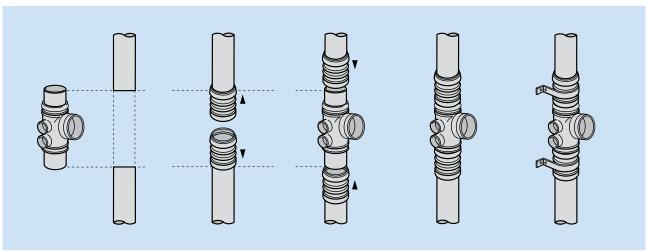


Fig. 11

Sitework Instructions

Support and expansion

Plastic pipes expand and contract with changes in temperature. It is therefore essential that expansion joints be provided for the relief of such thermal movement. Any point where a pipe is made good, or fire stopped when passing through a floor or wall, must be treated as a fixed point when arranging the position of expansion joints, but should not be relied on to anchor the pipe unless the socket of a fitting is firmly concreted in. An expansion joint must be fitted between any two fixed points one metre or more apart.

(See Fig. 12) Vertical stacks are generally suported by holderbats anchoring expansion joints. Intermediate holderbats are necessary to steady the pipes.

More frequent support is required in horizontal runs. Maximum distances between expansion joints and holderbats are given in the tables below.

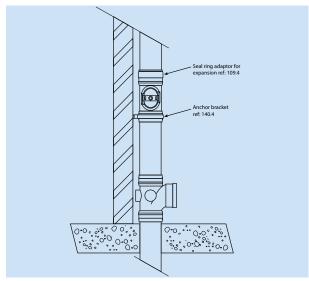


Fig. 12

	Size ins	Size mm	Max Support	Max Support	Max Expansion
			Vertical Metres	Horizontal Metres	Horizontal or Vertical Metres
Soil System	3	82	2.0	0.9	4.0
	4	110	2.0	1.0	4.0
	6	160	2.0	1.0	4.0
Waste System	11⁄4	32	1.2	0.4	2.0
	1½	40	1.2	0.5	2.0
	2	50	1.2	0.9	2.0

NOTE: For further details, refer to separate brochure:
"A Guide to Thermal Movement"

Steel holderbats, 140 and 141

These are designed to clamp fittings, creating a fixed point and to control thermal movement of pipework.

To use holderbats for fittings the strap must fit snugly around the fitting. locate tongue in front of square hole and position strap to suit curvature of fitting. Insert bolt in circular hole and tighten nut (Fig. 14).

For pipe, locate tongue in back square hole and bolt in circular hole and tighten nut. The pipe must be free to move through the holderbat to allow expansion and contraction (Fig. 15). (Alternatively a packing piece 9104 can be used for pipe with the tongue located in the front square hole, as for fittings (Fig. 16).

Plastic adjustable holderbat 143

This is designed to perform the same two functions as the steel holderbats, i.e. to support pipework and allow thermal movement. When clampled around the socket of a fitting it creates a fixed point (Fig. 17).

Adjustable holderbat 144

This is designed to perform the same functions as the other holderbats except it provides up to 28mm of adjustment on the 110mm system. When clamped around the socket of a fitting it creates a fixed point. When used to support pipe it is necessary to locate strap onto inside of back plate (Fig. 18).

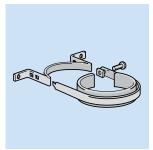


Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 17(1)

Fig. 17(2)

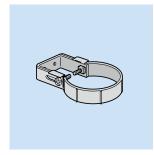


Fig. 18

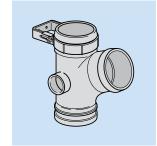


Fig. 18(1)

Fig. 18(2)

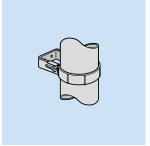


Fig. 18(3)

Sitework Instructions

Boss pipes 120 & 123

Only top socket can be converted to seal ring using seal ring adaptor 109.

Lugs permit holderbat anchorage.

120.4 - Accepts 200.125 and 200.15 pipe. (Fig. 22).

Sockets can be converted for expansion using a seal ring adaptor 109.

120.3.2 - Accepts 200.2 pipe and is suplied with blanking plugs that can have the centres removed to accept 200.15. (Fig. 23).

Must be used with engraved arrow pointing downstream to accommodate built in fall of $1\frac{1}{4}$ °.

123.4 - Must be used with branch boss adaptors 117 or 117.90. Waste pipe then push fits into fitting. (Fig.24)

Only the top socket can be converted to seal ring using seal ring adaptor 109.

This boss pipe is for use with bends 207.15.150 allowing the waste pipe to approach at clip distance without the use of offsets. It can be used in both flat (Fig. 26) and corner (Fig.27) situations where pipes approach at 180° and 90° respectively. Solvent weld blanking plug into unused socket.

All bosses will accept 1½" waste pipe, solvent welded direct into the boss pipe.

For 1¼" connection a socket reducer 224.15.125 is required. Then use 207.125.150.

NOTE: The letters A, B, and C will be found engraved above each socket on the fitting.

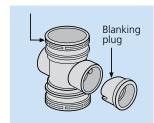


Fig. 22

Fig. 22

Fig. 24

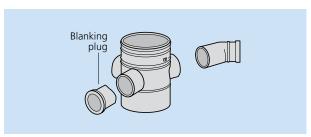


Fig. 25

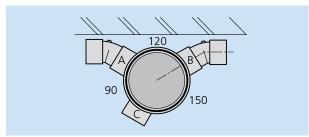


Fig. 26

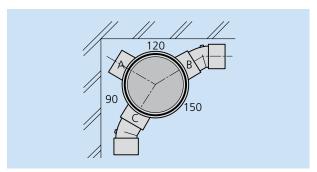


Fig. 27

Connection via universal manifold

Applicable to:

119P Universal Soil Manifold (Fig. 79).119 (solvent connections) and 119P (push-fit connections)For 32mm and 40mm waste connection

- For up to four connections of BS EN 1566/
 BS EN 1451-1 waste pipe at floor level (e.g. in bathroom) without need for adaptors.
- May be positioned neatly in corner of room for connection to internal soil stack.
- Supplied with four inlets and with removeable plugs.
- A sealing gasket is supplied for each inlet (Push fit only).
 Install as follows:
 - Mark selected position the manifold will occupy on the floor and cut out shape.
 - Push-fit soil connections to top socket, spigot connection to bottom socket.
 - Remove plug (if present) from selected waste inlet(s).
 - Push-fit as necessary waste pipe into the manifold until the stop is reached.
 - Check that any waste inlet which is not required has plug in place.

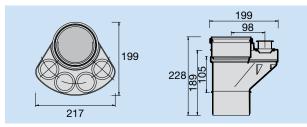


Fig. 79 419.4.15 Universal soil manifold

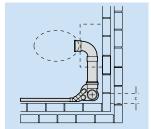


Fig. 80 Internal soil stack connection

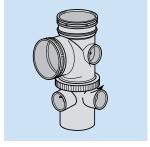


Fig. 80 Internal soil stack connection

Sitework Instructions

Variable boss branch

- Slacken locking ring (Fig. 28).
- Rotate lower unit so that waste connections are in required position (Fig. 29).
- Tighten locking ring (Fig. 30).
- If at ground floor use spigot version push into buried drain lipseal (Fig. 31).
- If at first floor and above use socket version and solvent weld to stack (Fig. 31).
- If only one waste connection is required solvent weld blanking plug into unused socket (Fig.32).
- If 1½" connections are required cut off socket plug at cut guide and use as a reducer (Fig.33).

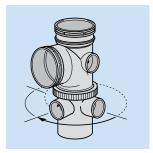


Fig. 29

Fig. 30

Fig. 31

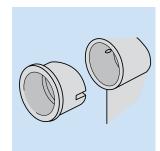


Fig. 32

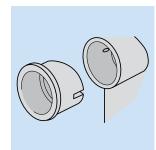


Fig. 33

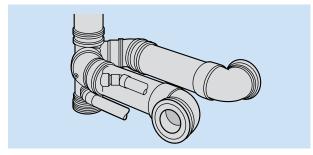


Fig. 34

Boss adaptors

These accept pipe via a boss ring adaptor, 117 straight or bent.

- Cut out centre of boss. For correct size hole cutter refer to (Fig. 35).
- Remove swarf and clean mating surfaces with Terrain cleaner 9101 (Fig. 36).
- Apply solvent cement 9100 to all mating surfaces (Fig. 37).
- Position boss adaptor, twist to ensure contact then hold under pressure for a few moments (Fig. 38).
- Remove excess cement (Fig. 39).

- Cut correct hole size and deburr (Fig. 40).
 For correct size hole cutter refer to table below.
- Remove swarf and clean mating surfaces with Terrain cleaner 9101 (Fig. 41).
- Apply solvent cement 9100 to all mating surfaces (Fig. 42).
- Pass inner component outward through hole from the inside of the pipe and push the outer component firmly on to it ensuring that the key and keyway are lined up. Ensure engraving reads: top 91¼ for waste top 88¾ for vent (Fig. 43).
- Insert toggle bolt and screw up until boss is fully closed with flanges in contact with the pipe both inside and outside. (Fig. 44).

NOTE: Leave toggle bolt in position for approximately 15 minutes.

Hole saw sizes					
Aperture diameter (mm)	To suit fitting ref.				
33	281.43				
48	112.125 - 135.3 - 112P.4.125				
51	117* - 112P.4.15				
57	112.15 - 115P.3 - 115P.4				
60	122.125 - 112P.4.2				
64	122.15 - 115				
70	112.2				
73	135.4 - 135.6				
75	122.2				

^{*} All sizes.

Fig. 35

Fig. 36

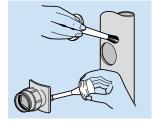


Fig. 37

Fig. 38

Fig. 39

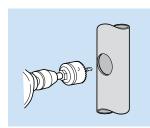


Fig. 40

Fig. 41

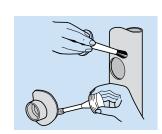


Fig. 42

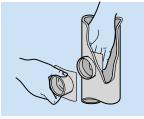


Fig. 43

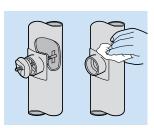


Fig. 44

Sitework Instructions

Self locking boss 122

- Cut correct hole size and deburr. For correct size hole cutter refer to table on page 59 (Fig. 45).
- Slacken nut on boss to full extent. Enter boss into hole keeping the keyway to the last piece to enter the hole. Tighten outer locking nut (Fig. 46).
- Once satisfied that the boss fits neatly into the pipe remove and clean all mating surfaces with Terrain cleaner 9101 (Fig. 47).
- Apply solvent cement 9100 to all mating surfaces (Fig. 48).
- Re-enter boss into the pipe. Screw up until hand tight and remove excess cement (Fig. 49).
- Template available ref: 9105.500.

9105.500

Access door 135 (4" & 5")

- Set out centre lines as described on inside of access door. Check aperture will be parallel with axis of pipe (Fig. 50).
- Drill two overlapping holes of correct size at 1¾" centres (Fig. 51).
- Remove sides of aperture using a medium file (Fig. 52).
- Slacken door to its fullest extent. Push the inner part of the door into the hole at a slight angle turning at the same time. When it is fully entered, turn it parallel to the axix of the pipe ensuring that the inner part locates into the hole. (Fig. 53).
- Ensure seal ring is lubricated prior to fitting.
 Tighten the screw whilst pulling the door outwards.
 Do not over tighten (Fig. 54)

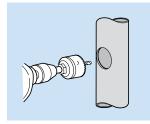


Fig. 45

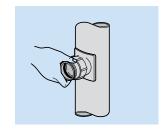


Fig. 46

Fig. 47

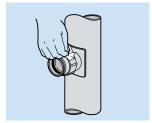


Fig 48

Fig. 49

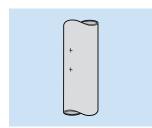


Fig. 50

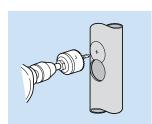


Fig. 51

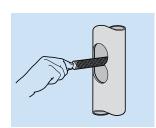


Fig. 52

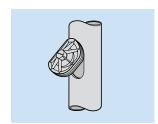


Fig. 53

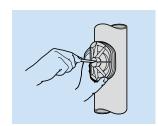
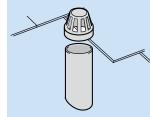


Fig. 54

Weathering slates for pitched roofs 149

- Place 150 Vent Cowl on open end of soil stack (do NOT solvent-weld at this stage) (Fig. 55).
- Slide 149 Weathering Slate over stack (Fig. 56).
- Dress the base plate to fit the lower tiles. Lay the side and upper tiles over the base plate (Fig. 57).
- Remove the vent cowl. Solvent-weld 131 Weathering Apron to pipe above rubber cone to prevent water ingress. Place 150 Vent Cowl onto stack and solventweld into position (Fig. 58).


NOTE: On low pitched roofs, optimum weathering may be achieved by making a single weld to the lower edge of the base plate.

In areas subject to high winds, or in difficult tiling situations, use tingles to prevent lower edge lifting away from tiles.

If installing on roof with interlocking tiles, boards or additional battens may be required underneath the weathering slate. The stack must pass through only ONE course (if necessary, the soil stack should be offset beneath the roof).

- Dress first layer of felt up to pipe (Fig. 59)
- Place 150 Vent Cowl on open end of soil stack (do NOT solvent-weld at this stage). Slide 149
 Weathering Slate over stack. Push slate (and its rubber cone) down onto first layer of felt (Fig. 60)
- Coat the aluminium baseplate with bitumen.
 CAUTION: Keep hot material away from rubber cone
 Place second layer of felt over baseplate up to the cone. Trim accordingly. Repeat for third layer of felt (Fig. 61).
- Solvent weld weathering apron 131 for asphalt to pipe above cone to prevent ingress of water. Replace vent cowl (Fig. 62).

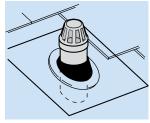
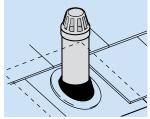



Fig. 56

Fia. 57

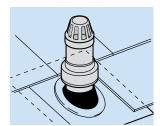


Fig. 58

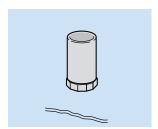


Fig. 59

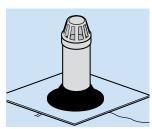


Fig. 60

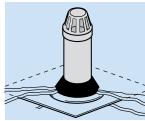


Fig. 61

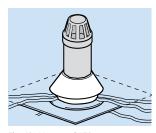
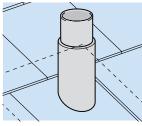


Fig. 48: Vent cowl 150 Weathering apron 131.3.200 or 131.4.200


Sitework Instructions

Weathering to pitched roofs using purpose made slate e.g. lead

- Position purpose-made weathering slate on open end of soil stack (Fig. 63).
- Slide 131 Weathering Apron over stack and solventweld in position. Replace vent cowl and solvent-weld into position (Fig. 64).

Weathering to asphalt roofs using purpose made slate e.g. lead

- Position purpose-made weathering slate on open end of soil stack. Lay asphalt as normal, over baseplate and to upper rim of lead upstand around pipe. Feather this edge of the asphalt (Fig. 65).
- Slide 131 Weathering Apron over stack and solventweld in position. Place 150 Vent Cowl onto stack and solvent-weld into position (Fig. 66).

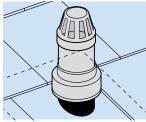


Fig. 64: Vent cowl 150
Weathering apron 131.3.200

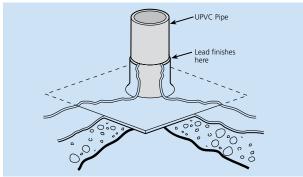


Fig. 65

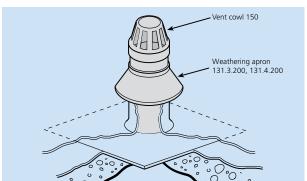
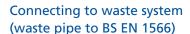


Fig. 6


System Planning

System connections to below ground drainage

Connecting to soil system (soil pipe to BS EN 1329)

- 110mm Soil Pipe to 110mm Underground Pipe
 110mm Underground Pipe may be connected directly to 110mm Soil Pipe (Fig. 25)
- A 45° external chamfer should be filed onto the end of square cut soil pipe. The soil pipe is then push-fit into the underground drain ring seal socket, using
 9136 Lubricant
- 82mm Soil Pipe to 110mm Underground Pipe (Fig. 26)
 Connection should be made using the 4DW3 Socket

 Reducer. The socket reducer is inserted into the plain end of the underground pipe. The 82mm soil pipe is then pushed into top of reducer

Connection is made using the **124 Socket Reducer**. The socket reducer is pushed into the ring seal of the socket on the underground drain pipe. The waste pipe is solvent-welded into reducer. Additional reducers may be used as required.

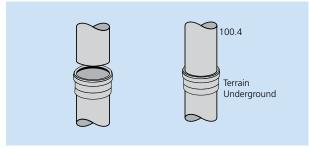


Fig. 25

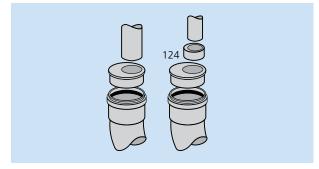


Fig. 26

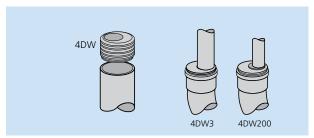


Fig. 27

Connecting to BS EN 5255/1566 waste pipe (Fig. 28) (also to copper waste pipe)

The centre of 130 Socket Plug should be drilled out, ready for solvent-weld connection of the appropriate size 4DW Boss Adaptor. Seal rings on 4DW and underground drain socket should be lubricated using 9136 Lubricant. The socket plug is then inserted into the underground drain socket and 200 Waste Pipe (or copper waste pipe) into 4DW adaptor.

Waste	
32mm round	
40mm round	4DW200
50mm round	

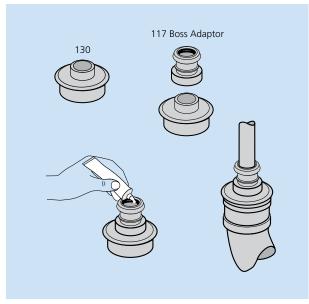
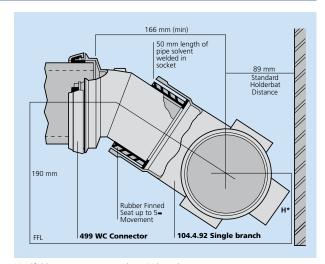


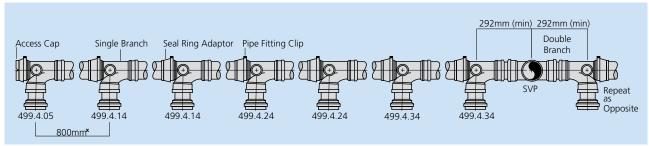
Fig. 28


Multiple connection of BS 5503 WC pansApplicable to: 129 WC manifold connectors

Connections to float laid to 1° fall of float (17mm drop per 1 metre run).

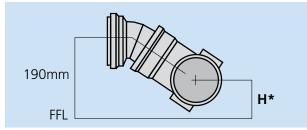
• For minimum dimensions solvent-weld 50mm pipe length into branch socket to provide sleeve.

NOTE: To extend distance between WC connector and branch, a longer length of pipe may be used.


- Position and fix branch to wall.
- Fit finned rubber seal onto spigot of connector.
- Push spigot of connector into sleeved branch socket (DO NOT LUBRICATE).
- Lubricate rubber seal with 9136 Lubricant to accept WC spigot.
- Align connector socket so that it is square with WC spigot (finned seal allows up to 5° adjustment).

Manifold connector connected to 104 branch

Alternatively float construction can be achieved using 498.4.02.


For centres less or greater than 800mm contact Technical Department.

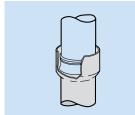
Multiple WC pan connections layout

Distance from finished floor level (FFL) to centre of float					
Connector Type	H* mm (min)	H* mm (max)			
499.4.05	166	176			
499.4.14	142	162			
499.4.24	114	132			
499.4.34	80	100			

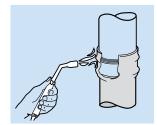
^{*} Variation achieved by flexing rubber finned seal joint.

Distance from finished floor level (FFL) to centre of float

System Connections


Connecting to other materials

Connecting to iron, clay or cement fibre spigot


Applicable to: 126 and 226 Adaptors. For soil and waste connections, use with:

9120 Seal Ring for 82mm 9119 Seal Ring for 110mm 9119B Seal Ring for 110mm

- Place rubber seal ring over spigot to half depth of socket (Fig.68).
- Position adaptor centrally Fig. 68 over joint:

- 126.3.12 Adaptor (for 82mm soil pipe)
- 126.4.12 Adaptor (for 110mm soil pipe)
- 226.2 Adaptor (for waste pipe)
- Heat gently with a gas torch/hot air gun, all round the socket starting at the base of the socket and working upwards (Fig. 69).
- When the socket has shrunk down to the adjoining spigot, and the captured seal ring has created a raised ridge, stop applying heat (Fig. 70).
- Leave to cool before moving or applying any pressure.

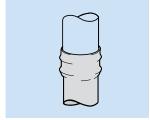
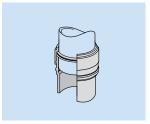



Fig. 70

Connecting to copper

- Clean pipe with 9101 Cleaning Fluid (Fig. 71).
- Replace black seal ring in PVC-u socket with appropriate red seal ring:
 - Seal ring ref. 9149 for 108mm metric copper to BS 2871

- Seal ring ref. 9145 for 4" imperial copper to BS 659
- Lubricate seal ring with 9136 Lubricant and and insert copper spigot as for standard PVC/PVC seal ring joint (see page 50).

Connecting to lead

- Clean pipe with 9101 Cleaning Fluid (Fig. 72).
- Wipe or lead weld short length of copper tube onto end of lead pipe.
- Follow procedure as for copper.

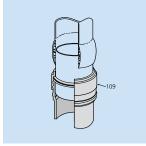
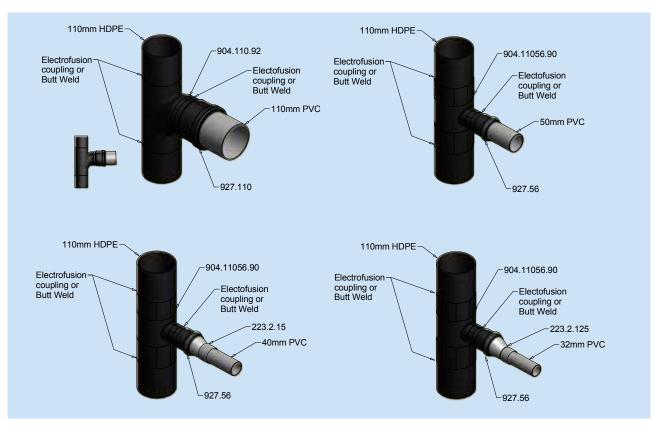



Fig. 72

Connecting to other materials

Connecting PVC to HDPE

Trapped floor gullies

Installing trapped floor gullies

Applicable to:

279/281 Trapped Floor Gully, and 282 and 283 Floor Gully

- Check overall height of unit with inlet in position, and adjust to suit installation location. (Do NOT solvent weld inlet at this stage) (Fig. 74/75).
- Place gully into position.
- Solvent-weld waste pipe to outlet socket.
- Bring floor screed up to level with bottom of gully inlet.
- Allow screed to set, and remove gully inlet.
- Apply waterproof mastic to underside of square flange of gully inlet.
- Solvent cement gully inlet into position.
- Tile up to inlet, and grout using waterproof grout.

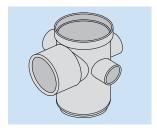


Fig. 75

Fig. 76

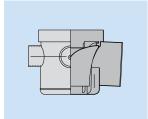


Fig. 77

System Connections

Connecting waste to soil pipework

Back to back WC connections

Back-to-back WC's must NEVER be connected using a double branch laid horizontally because cross flow WILL occur .

EITHER

- Run two separate horizontal floats using a corner branch.
 OR
- Stagger connections on a single float.

Using: 106.490.12, 106.490.22 Corner boss branches

 Use as Fig. 34 (page 55) with 135° bends. Can connect single or a range of WC's on each 110mm branch Lower bosses can connect two 50mm waste pipes directly to sockets or 40 and 32mm pipes using appropriate reducers.

Using standard single branches and 499 WC manifold connectors

See page 61 for details on angles.

- Alternatively, use staggered layout, as shown in Fig. 78.
- Use standard boss connection methods.

Minimum distance between WC spigots 445 mm 130 min 149 min 166 min 157 mix 104.4.135 107.4.135 107.4.135 107.4.135 109.4 101.4.05 101.4.05 101.4.05 101.4.05

Fig. 78

Making offsets

Offsets on-site

Requirement: To offset soil pipe run

- Created on site with a length of 100 soil pipe and 101, 101P, 107 & 107P bends.
- Measure projection required.
- Determine length of pipe required, noting minimum offsets possible (Fig. 82)
- Square-cut pipe length and de-burr cut ends. For ring-seal joints, pipe ends must be chamfered.
- Solvent-weld or push-fit into standard bend or offset bend sockets

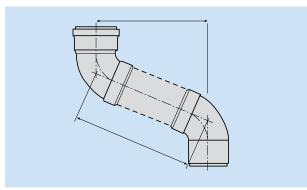


Fig. 82 Offset pipe

Design Considerations

Design Considerations - Above Ground Drainage

Building regulations requirements

All sanitary pipework and drainage installations must satisfy the relevant requirements of Part H1 of the approved documents to the England, Wales and Northern Ireland Building Regulations 1990 and the Building Standards (Scotland) amendment regulations 1982.

Installations in accordance with BS EN 12056:2 Code of practice for sanitary pipework will also meet Building Regulations requirements.

Ventilation

The discharge stack must be ventilated in order to prevent pressure building up within the system and drawing the water seals in the traps. Separate ventilation of branch pipes is required only if the length and slope of the branch exceeds the following dimensions:

Maximum length:

(32mm) 1.7 metres

(40mm) 3 metres

(50mm) 4 metres

Slope: 18-90mm per metre

In such cases, the branch pipe should be ventilated by a branch ventilating pipe or an anti-syphon trap should be fitted. The Automatic Air Admittance Valve reduces the number of stack ventilating pipes required to penetrate the roof in multi-installations, without affecting performance of the drainage system.

Thermal expansion

Within a solvent-weld system it is important to make adequate allowance for thermal movement. This is most easily achieved by fitting an expansion ring seal joint between two fixed solvent-weld joints. The expansion gap should be created by pushing the spigot fully into the ring seal socket, and marking the position at the socket face. Then withdraw the spigot by 10mm. Check subsequently to ensure that the expansion gap is not lost during further installation work.

Branch connections

The distance between the centreline of the lowest branch connection to the discharge stack and the invert of the bend at the foot of the stack should be in accordance with the following:

- ≤3 storeys 450mm min.
- ≤5 storeys 750mm min.

- 5 storeys + Ground floor connections should discharge direct to drain or into their own stack
- 20 storeys + Ground floor and first floor connections should discharge into their own stack

A branch pipe should not discharge into a stack in a way which could cause crossflow into any other branch pipe.

Working temperatures

Terrain Soil and Waste systems may be used to convey liquids with a maximum temperature of 76°C when subjected to continuous flow. Intermittent discharges of up to 100°C may occur provided they are of less than 2 minutes duration.

Chemical discharges

Terrain Soil and Waste systems are generally resistant to most commonly used acids and those that may be discharged to the public sewer system. The rubber seals, however, are less resistant and it is advised that before any chemicals are conveyed through the systems, checks are made to establish their effects on the product. Refer to BS CP 312 Part 1 Code of Practice for Plastic Pipework for further information.

Access

Sufficient and suitable access must be provided to enable all pipework to be tested and maintained effectively. Access covers, plugs or caps should be installed in positions to facilitate use of testing equipment and removal of blockages.

Fire spread

In large commercial or housing developments, compartmentation may be required by the Building Regulations 1991 (Part B 3(2) Schedule 1). In such cases, any penetrations by sanitary pipework must be suitably fire stopped. Suitable measures include the containment of pipes from floor to ceiling in a fire resistant enclosure (with appropriate fire rating). In addition, the Terrain Firebrake Intumescent Sleeve has been designed to meet the highest fire stopping requirements.

Pipe support

Pipes must be adequately supported when installed vertically or horizontally (to falls).

Notes:

1. Gradients

Gradients should be between 1 and 5 degrees with a maximum distance of 3 metres. Distances over 3 metres are prone to blockage and should therefore be provided with access (Terrain Reference 204.15.135 & 237.15).

2. Venting

Maximum distance from stack for unvented system is 1.7 metres according to angle (see diagram A for details). Above 1.7 metres, venting is required, and if this is impractical then a suitable re-sealing trap (415.15) should be used.

3a. Air Admittance Valves

Air admittance valves (Terrain ref. 153.4.3) may be fitted as an alternative to an open vent, however an open vent must be allowed at the head of a drain. For further details see agreement Certificate No 06/4343.

3b. Terrain Pleura

Terrain Pleura may be fitted as an alternative ventilation system. The Pleura 50 protects the fixtures connected to the branch drain with the Pleura 100 and the PAPA together protecting the stack against positive and negative air pressures. An open vent must be allowed at the head of the drain. For further details see BBA Certificate 89/2139.

4. W.C. Connectors

W.C. connectors shown are to horizontal outlet pans (to BSEN997). For traditional P and S outlets a Terrain 495.4.5 or 492.4.5 connector should be used.

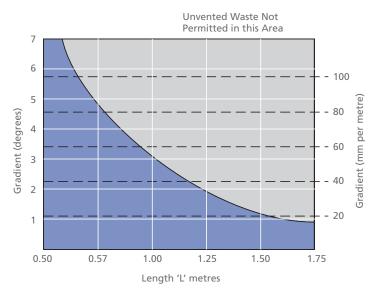
5. Stub Stacks

Stub stacks are used to connect one set of domestic appliances. A to be maximum of 2.0 metres and B (to crown of W.C. trap) to be maximum of 1.5 metres.

6. Connection Zones

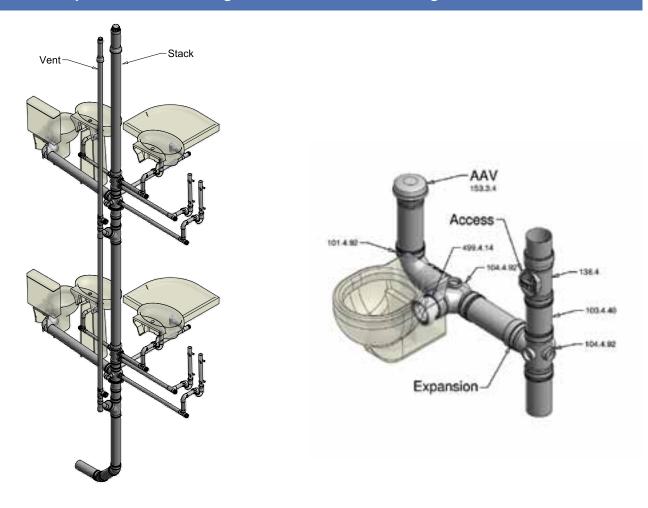
Although four bosses have been provided on branches and access pipes certain connections are not allowed under BS5572. For permitted connections, see diagrams.

7. Distances

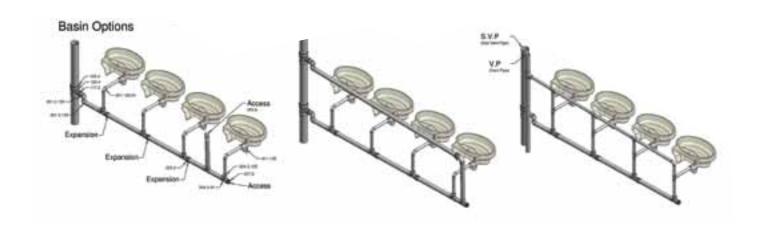

Distance must be a minimum of 450mm for single houses up to 3 storeys, or a minimum of 750mm up to 5 storeys, or one storey height for 5 storey buildings and over.

Minimum radius of bend 200mm or alternative of 2

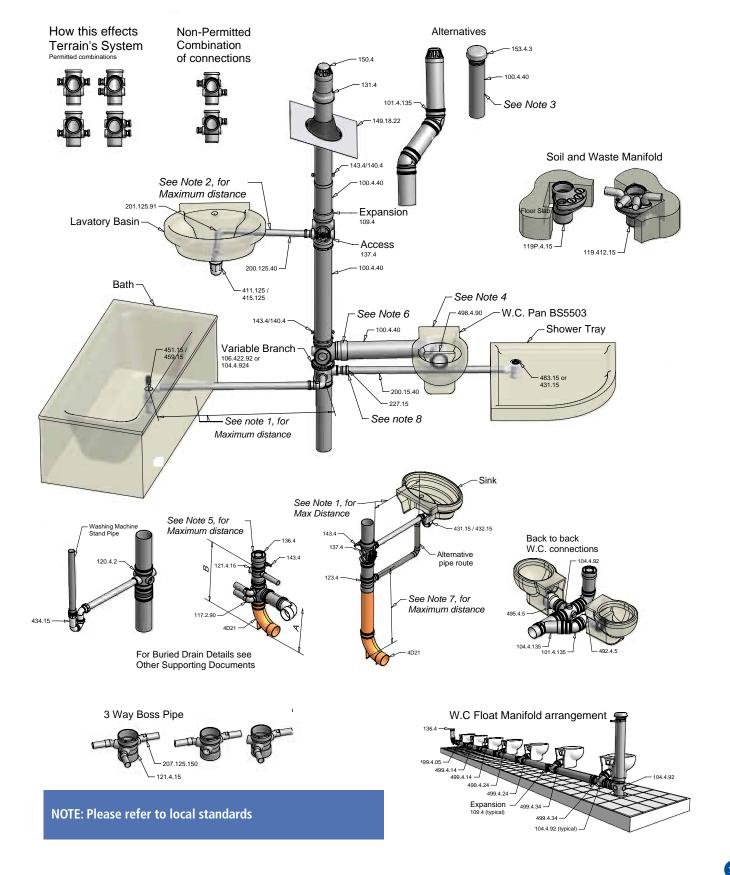
No. 45 degree bends.


8. Support and Expansion

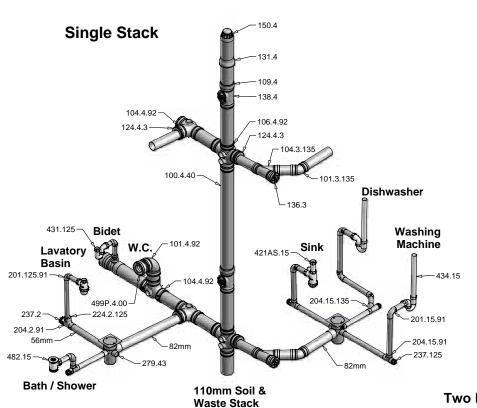
Expansion should be allowed every 4.0 metres for 82mm, 110mm and 160mm and 2.0mtrs for 36mm, 43mm & 56mm respectively both vertically and horizontally.

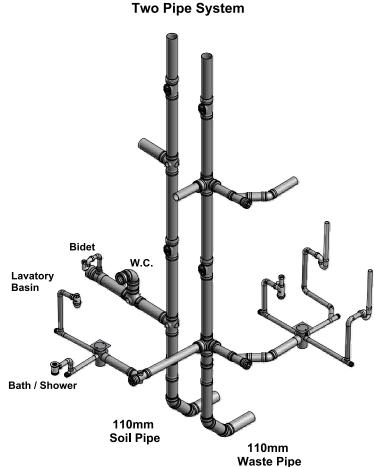


UK Design Principles

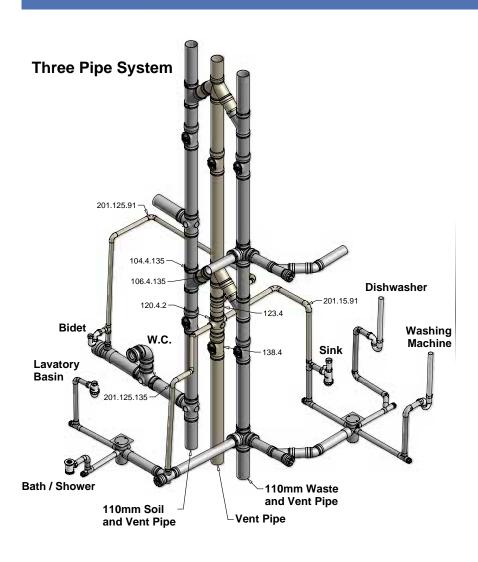

UK Principles of Stack Venting for Soil and Waste Drainage

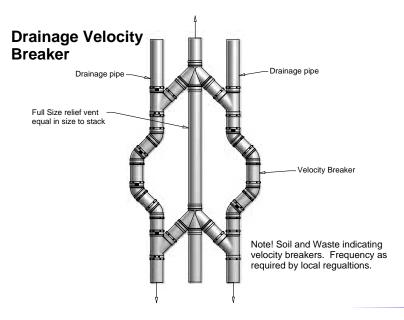
Traditional stack Vent




UK Principles of Stack Venting for Soil and Waste Drainage

Middle East Design Principles


Middle East Design Principles



Middle East Design Principles

Middle East Design Principles

Design Data - Soil & Waste Drainage

Table A: Discharge units (DU) Values

Appliance	System III DU I/s
Wash basin, bidet	0.3
Shower without plug	0.4
Shower with plug	1.3
Single urinal with cistern	0.4
Urinal with flushing valve	-
Slab urinal	0.2*
Bath	1.3
Kitchen sink	1.3
Dishwasher (household)	0.2
Washing machine up to 6kg	0.6
Washing machine up to 12Kg	1.2
WC with 4.0L cistern	**
WC with 6.0L cistern	1.2 to 1.7***
WC with 7.5L cistern	1.4 to 1.8***
WC with 9.0L cistern	1.6 to 2.0***
Floor gully DN 50	-
Floor gully DN 70	-
Floor gully DN 100	-

- * Per person.
- ** Not permitted.
- *** Depending upon type (valid for WC's with siphon flush cistern only).
- Not used or no data.

Example:

10 storey building with

2 WC 4 WHB 2 Baths On each floor

2 Sinks 2 W/MC

 $2 \times 1.5 = 3.0$ $4 \times 0.3 = 1.2$

 $2 \times 1.3 = 2.6$

 $2 \times 1.3 = 2.6$

 $2 \times 0.6 = 1.2$

10.6 x 9 = 95.4 DU

Domestic Building Use K = 0.7

 $0.7 \sqrt{95.4} = 6.84 \text{ l/s}$

See Table C and D for capacities of pipes.

Table B: Typical frequency factors (K)

Usage of appliances	K
Intermittent use, e.g. in dwelling, guest-house, office	0.5
Frequent use, e.g. in hospital, school, restaurant, hotel	0.7
Congestred use, e.g. in toilets and/or showers open to public	1.0
Special use, e.g. laboratory	1.2

Frequency factor (K)

Typical frequency factors associated with different usage of appliances Table B.

Calculation of flowrate

Waste water flowrate (Qww)

Qww is the expected flowrate of waste water in a part or in the whole drainage system where only domestic sanitary appliances are connected to the system

 $Qww = K\sqrt{\sum}DU$

where:

Qww = Waste water flowrate (L/s)

K = Frequency factor

 \sum DU = Sum of discharge units.

NB: Under no circumstances should pipe of a larger diameter be connected to pipe of a smaller diameter in the direction of flow.

Table C: Stack with only Primary Vent

Stack & Stack Vent	System I, II, III, IV Q max (L/s)				
DN	Square # entries	Swept entries			
60	0.5	0.7			
70	1.5	2.0			
80*	2.0	2.6			
90*	2.7	3.5			
100**	4.0	5.2			
125	5.8	7.6			
150	9.5	12.4			
200	16.0	21.0			

Minimum size where WC's are connected in system II.

Table D: Stack with Secondary Venting

Stack & Stack Vent	Secondary Vent	System I, Q max	
DN	DN	Square # entries	Swept entries
60	50	0.7	0.9
70	50	2.0	2.6
80*	50	2.6	3.4
90*	50	3.5	4.6
100**	50	5.6	7.3
125	70	7.6	10.0
150	80	12.4	18.3
200	100	21.0	27.3

For branch pipe sizing based on System III the following sizing charts should be used.

For branch pipe sizing based on system ill the following sizing								
Appliance	Dia. DN	Min. trap seal depth (mm)	Max. length (L) of pipe from trap outlet to stack (m)	Pipe gradient	Max. no. of bends	Max. drop (H) (m)		
Limitations for unventilated branch discharge pipes, system III								
Washbasin, bidet (30mm diameter trap)	30	75	1.7	2.2 ¹⁾	0	0		
Washbasin, bidet (30mm diameter trap)	30	75	1.1	4.41)	0	0		
Washbasin, bidet (30mm diameter trap)	30	75	0.7	8.71)	0	0		
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 to 4.4	2	0		
Shower, bath	40	50	No Limit ²⁾	1.8 to 9.0	No Limit	1.5		
Bowl urinal	40	75	3.0 ³⁾	1.8 to 9.0	No Limit ⁴⁾	1.5		
Trough urinal	50	75	3.0 ³⁾	1.8 to 9.0	No Limit ⁴⁾	1.5		
Slab urinal ³⁾	60	50	3.0 ³⁾	1.8 to 9.0	No Limit ⁴⁾	1.5		
Kitchen sink (40mm diameter trap)	40	75	No Limit ²⁾	1.8 to 9.0	No Limit	1.5		
Household dishwasher or washing machine	40	75	3.0	1.8 to 4.4	No Limit	1.5		
WC with outlet up to 80mm ⁶⁾	75	50	No Limit	1.8 min	No Limit ⁴⁾	1.5		
WC with outlet greater than 80mm ⁶⁾	100	50	No Limit	1.8 min	No Limit ⁴⁾	1.5		
Food waste disposal ⁷⁾	40 min	75 ⁸⁾	3.0 ³⁾	13.5 min	No Limit ⁴⁾	1.5		
Sanitary towel disposal unit	40 min	75 ⁸⁾	3.0 ³⁾	5.4 min	No Limit ⁴⁾	1.5		
Floor drain	50	50	No Limit ³⁾	1.8 min	No Limit	1.5		
Floor drain	50	50	No Limit ³⁾	1.8 min	No Limit	1.5		
Floor drain	100	50	No Limit ³⁾	1.8 min	No Limit	1.5		
4 basins	50	75	4.0	1.8 to 4.4	0	0		
Bowl urinals ³⁾	50	75	No Limit ³⁾	1.8 to 1.9	No Limit ⁴⁾	1.5		
Maximum of 8 WC's ⁶⁾	100	50	15.0	0.9 to 9.0	2	1.5		
Up to 5 spray tap basins ⁹⁾	30 max	50	4.5 ³⁾	1.8 to 4.4	No Limit ⁴⁾	0		

- Steeper gradient permitted if pipe is less than maximum permitted length.
- If length is greater than 3m noisy discharge may result with an increased risk of blockage.
- Should be as short as possible to limit problems with deposition.
- Sharp throated bends should be avoided.
- For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
- $\label{prop:control} \mbox{Swept-entry branches serving WC's}.$
- Includes small potato-peeling machines.
- Tubular not bottle or resealing traps.
- Spray tap basins shall have flush-grated wastes without plugs.

Ventilated discharge branches: Sizes and limitations upon the use of ventilated discharge branches are given in the tables above. Limitations given in the second table are simplifications, for further information see national and local regulations and practice.

Appliance	Dia. DN	Min. trap seal depth mm	Max. length (L) of pipe from trap outlet to stack m	Pipe gradient	Max. no. of bends	Max. drop (H) m			
Limitations for unve	Limitations for unventilated branch discharge pipes, system III								
Washbasin, bidet (30mm diameter trap)	30	75	3.0	1.8 min	2	3.0			
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 min	No Limit	0			
Shower, bath	40	50	No Limit ²⁾	1.8 min	No Limit	No Limit			
Bowl urinal	40	75	3.0 ³⁾	1.8 min	No Limit ⁴⁾	3.0			
Trough urinal	50	75	3.0 ³⁾	1.8 min	No Limit ⁴⁾	3.0			
Slab urinal ³⁾	60	50	3.0 ³⁾	1.8 min	No Limit ⁴⁾	3.0			
Kitchen sink (40mm diameter trap)	40	75	No Limit ²⁾	1.8 min	No Limit	No Limit			
Household dishwasher or washing machine	40	75	No Limit ³⁾	1.8 min	No Limit	No Limit			
WC with outlet up to 80mm ^{6) & 14)}	75	50	No Limit	1.8 min	No Limit ⁴⁾	1.5			
WC with outlet greater than 80mm ^{6) & 14)}	100	50	No Limit	1.8 min	No Limit ⁴⁾	1.5			
Food waste disposal ⁷⁾	40 min	75 ⁸⁾	3.0 ³⁾	13.5 min	No Limit ⁴⁾	3.0			
Sanitary towel disposal unit	40 min	75 ⁸⁾	3.0 ³⁾	5.4 min	No Limit ⁴⁾	3.0			
Bath drain, floor drain	50	50	No Limit ³⁾	1.8 min	No Limit	No Limit			
Floor drain	70	50	No Limit ³⁾	1.8 min	No Limit	No Limit			
Floor drain	100	50	No Limit ³⁾	1.8 min	No Limit	No Limit			
5 basins ⁹⁾	50	75	7.0	1.8 to 4.4	2)	0			
10 basins ^{9) & 10)}	50	75	10.0	1.8 to 1.9	No Limit	0			
Bowl urinals ^{9) & 11)}	50	70	No Limit ³⁾	1.8 min	No Limit ⁴⁾	No Limit			
More than 8 WC's ⁶⁾	100	50	No Limit	0.9 min	No Limit	No Limit			
Up to 5 spray tap basins ⁹⁾	30 max	50	No Limit ³⁾	1.8 to 4.4	No Limit ⁴⁾	0			

- For maximum distances from trap to vent (see Figure 8 of BS EN 1205-2:2000).
- If length is greater than 3m noisy discharge may result with an increased risk of blockage.
- Should be as short as possible to limit problems with deposition. Sharp throated bends should be avoided.
- For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
- Swept-entry branches serving WC's.
- Includes small potato-peeling machines.
- Tubular not bottle or resealing traps.
- See Figure 9 of BS EN 12056-2:2000).
- 10) Every basin shall be individually ventilated.
- Any number.
- Spray tap basins shall have flush-grated wastes without plugs.
- The size of ventilating pipes to branches from appliances can be DN 25 but, if they are longer than 15m or contain more than five bends, a DN 30 pipe shall be used.
- If the connection of the ventilating pipe is liable to blockage due to repeated splashing or submergence, it should be DN 50, up to 50mm above the spill-over of the appliance.

Minimum size where WC's are connected in system I, III, IV. # Equal branch junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

Minimum size where WC's are connected in system II.

Minimum size where WC's are connected in system I, III, IV. # Equal branch junctions that are more than 45°, or has a centre line radius less than the

Design Data - Rainwater

Basic Principles for Rainwater Designs

Sizing of rainwater installations

The following general guidelines are based on BS EN 12056-3:2000 Gravity Drainage Systems Inside Buildings – Roof Drainage, Layout and Calculations.

There are two factors to consider when calculating the rainwater flow from a roof, firstly the design rainfall intensity to be used and the effective roof area to be drained.

Rainfall Intensity

It is important to confirm the design rainfall intensity with the client before carrying out any design work; this can be done by calculation (refer to BS EN 12056-3:2000) or based on local requirements.

Effective Roof Area

Before the effective roof area can be calculated it is necessary to determine if the calculation will be affected by:

- a) Snow, (Section NB4, BS EN 12056-3:2000) details the design requirements for snow which should be taken into account.
- b) Wind, there is no requirement to allow for the effect of wind when designing a rainwater system for flat roofs or roofs protected from the wind by adjacent buildings. However, the wind and the roof slope can have the effect of increasing the flow of rainwater from the roof of unprotected pitched roofs.

Note: Flat roofs should be designed to allow for structural deflection under dead and imposed loads, BS 6229:2003, table 6 details the minimum finished falls for a flat roof dependent upon the roof covering.

c) Tall Buildings, when draining onto a lower level roof the effective catchment area of a wall should be taken as 50% of its area up to a maximum exposed height of 10m

The effective roof area can be calculated using the following formulae,

Flat roof

 $A(m^2) = L \times B$ where

A = Effective roof area (square metres)

L = Length of roof (metres)B = Width of roof (metres)

Pitched roof

 $A(m^2) = L x (B+H/2)$ where:

A = Effective roof area (square metres)

L = Length of roof (metres)

B = Width of roof (metres)

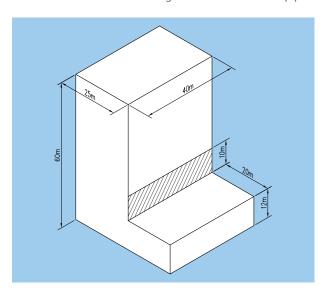
H = Height of rood between eaves and ridge (metres) If an adjacent wall is to incorporated into the equation then the following needs to be added to the two formulae

0.5 (l x w) where:

L is up to maximum of 10m

Calculating design flow

Having determined the rainfall intensity (mm/hr) and effective roof area, A(m2), the following calculation is required to establish the actual design flow from the roof.


Flow rate, Q (l/s) =
$$\frac{A(m2) \times RI (mm/hr)}{3600}$$

Example

A 20 storey residential block has a roof plan of 40 m x 25 m, there is also a podium level at level 3 with plan dimensions of 40 m x 25 m. The podium has been designed as a flat roof with a parapet around the perimeter. The roof will have a minimum slope towards the parapet, rainwater will discharge into a 50 mm formed gutter

Local regulations have determined a design rainfall intensity of 75mm/hr.

Terrain domed PVCu outlets are to be installed on the main roof and flat grated outlets are to be installed at podium level. All outlets are to discharge into PVCu rainwater pipes.

Basic Principles for Rainwater Designs

Step 1, Determine roof area to be drained and flow rate.

Main Roof	. (2)		-1	
Effective roof area	. ,) = (L x B)		
	Α	= (40	x25)	
	Α	= 100	0 m ²	
Flow rate	Q (l/s)	=	A(m²) x RI (mm/hr)	
			3600	
	Q =		1000 x 75	
			3600	
	Q =		20.83 l/s	
Podium Roof				
Effective roof area	A(m ²)	= (L x	B) + 0.5 (l x w)	
	Α	= (40	x20) + 0.5 (10 X 40)	
	Α	= (800)) + (200)	
	Α	= 100	0 m ²	
Flow rate	Q (l/s)	=	A(m²) x RI (mm/hr)	
			3600	
	Q =		1000 x 75	
			3600	
	Q =		20.83 l/s	

Step 2, Determine No of rainwater outlets required.

The table below details the flow rates achieved through terrain rainwater outlets for a given head of water over the outlet during a 75mm/hr rainfall intensity.

Roof Outlet	Size (mm)	Flow capacity litres/sec Head of water at Outlet			
Part No.		30mm	50mm	100mm	
2180.2	50	0.88	1.18	1.78	
2180.3	82	2.12	2.52	3.21	
2181.2	50	2.00	2.27	2.69	
2181.3	82	2.1	4.89	7.22	
2170.3	82	9.18	11.08	13.67	
2170.4	110	9.29	14.11	18.22	
2171.3	82	4.94	9.24	16.64	
2171.4	110	5.17	9.95	24.18	

To suit the design of the main roof 5 No 2171.3 outlets will be installed based on a flow rate of 4.94 l/s, (head over outlet 30mm). This allows for a total of 24.7 l/s to be collected and discharged from the roof.

To suit the design of the podium roof 4 No 2170 .3 outlets will be installed based on a flow rate of 9.18 l/s, (head over outlet 30mm). This allows for a total of 36.72 l/s to be collected and discharged from the roof.

Step 3, Determine size of rainwater pipes required.

BS EN 12056-3:2000, Table 8 – capacities of vertical rainwater pipes, recommends the maximum design flow in vertical circular rainwater pipes.

Internal diameter of rainwater pipe (mm)	Capacity RWP (l/s)		Internal diameter of rainwater pipe (mm)	ŘV	acity VP 's)
	Filling Degree f =0.20	Filling Degree f =0.33		Filling Degree f =0.20	Filling Degree f =0.33
55	0.9	2.2	150	13.7	31.6
60	1.2	2.7	160	16.3	37.5
65	1.5	3.4	170	19.1	44.1
70	1.8	4.1	180	22.3	51.4
75	2.2	5	190	25.7	59.3
80	2.6	5.9	200	29.5	68
85	3.0	6.9	220	38.1	87.7
90	3.5	8.1	240	48	110.6
95	4.0	9.3	260	59.4	137
100	4.6	10.7	280	72.4	166.9
110	6.0	13.8	300	87.1	200.6
120 130	7.6 9.4	17.4 21.6	> 300	Eaton	Use wyly- Eaton equation

A filling degree of 0.33 shall be used unless national/local regulations and practice states that another filling factor should be used.

From our example, for the main roof we have chosen two number 110mm rainwater pipes collecting each collecting two rainwater outlets discharging a maximum of 4.94l/s. From The table above a 100mm internal rainwater pipe would be required (capacity 10.7l/s). Terrain 110mm PVCu pipework has an internal diameter of 103.6mm and is acceptable.

The podium roof will be collected and discharged through four number 110mm rainwater pipes each discharging a maximum of 9.18 l/s.

Note: where horizontal pipe runs are required, BS EN 12056-3:2000, table C.1 should be referred to, to ensure that the correct pipe size is chosen for the proposed gradient.

Fabrication Service

Fabrication Service

Pre-fabrication

Shortage of skilled labour is just one reason for the growth of pre-fabrication within construction. Moving significant elements of the process from site to factory provides improvements in quality, cost and time predictability, productivity and safety.

With unrivalled expertise in PVC fabrication systems, our Fabrication Service has been helping specifiers and contractors overcome problems, both at the design stage and on site.

Specialists in fabrication

The Terrain Fabrication team works closely with our Technical Services Department, employing the latest design and manufacturing technologies.

Together, they produce high quality Pre-fabricated Stacks and Specials, either by making modifications to existing products from the Terrain range, or by conceiving components from scratch to deal with particularly awkward problems.

Where fittings are designed specially, CAD technology is used to provide accurate drawings, along with indications of all relevant dimensions.

Our fabrication team provides services in two key areas.

Standard specials

- These are produced by making slight modifications to existing Terrain products to suit frequently occurring design problems.
- These products tend to be required regularly, but in small quantities.
- Delivery lead time is usually the same as for standard catalogue items.

Custom specials

- These are designed and fabricated specifically to meet the unique design requirements created by special architectural features. They can be made not only on a one-off or small batch basis, but also in their hundreds, subject to the demands of your particular project.
- They can be produced to your precise specification in virtually any size or shape.
- Custom Specials provide solutions to otherwise unsolvable design problems.
- Delivery time depends upon the complexity of the design and number required.

Pre fabricated stacks

Prefab Stacks consist of soil and waste pipes and fittings pre-assembled at the factory to pre-determined lengths to provide a modular soil and vent stack.

These offer a number of benefits:

- Time and labour costs on site are reduced by minimising the joints to be made.
- Highly efficient for commercial, leisure and housing projects where identical plumbing arrangements are repeated a number of times.
- Can be quickly installed, reducing the need to re-locate residents, making them ideal for refurbishment work.

Three easy steps for our special fabrication service

It couldn't be simpler to order Specials or have a Pre-fabricated Stack manufactured for you.

- Send a dimensioned sketch and specification by email, fax or post to our Technical Services Department.
- We will then advise you on design possibilities and send you back CAD diagrams, if necessary, complete with a part number and price for your approval.

If the special is being incorporated into the design stage of a drainage layout, be sure to include the unique part number with any plans to be passed to the contractor.

 You place the order through your local merchant, stating the unique product number and price.

Certifications

Certifications

Certifications

Manufacturing Standards

BS 5255:1989 Specification for Thermoplastics Waste Pipe and Fittings

BS 4514:2001 PVC Soil and Ventilation Pipes, Fittings and Accessories

BS EN 1329:2000 Plastic Piping Systems for Soil and Waste Discharge

BS EN 1566:2000 Plastic Piping Systems for Soil and Waste Discharge (Chlorinated)

BS EN 12380 A1 Air Admittance Valve

BS EN 12380 A1 Air Admittance Valve (Pleura System)

BS EN 1366-3 Terrain Firetrap Sleeves and Collars

Quality Management Systems Standards

EN ISO 9001:2008 Management System

EN ISO14001:2004 Management System

BS OHSAS 18001:2007 Management System

PASS 99:2006 Integrated Management Registration

Terrain Above Ground

Polypipe Gulf FZ LLC

Dubai Media City New Hythe Business Park Loft Office No. 03 College Road

Office no. 404 Aylesford

P.O. Box 502320 Kent Dubai ME20 7PJ

United Arab Emirates United Kingdom Tel: +971 (0)4 454 8328 Tel: +44 (0)1622 795200

Fax: +971 (0)4 454 2949 Fax: +44 (0)1622 716796

www.polypipegulf.com

 $international @polypipe.com \\ commercial enquiries @polypipe.com$ www.terraindrainage.com

Polypipe Terrain

